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Abstract---The interfacial area transport equation is derived from the statistical model of fluid particle 
number transport equation. The resulting equation includes the source and sink terms due to the particle 
interactions and interfacial phase change. The consistency of this new approach is demonstrated in terms 
of the mac roscopic continuity equation of a bubbly flow field. The basic mechanisms affecting these source 
and sink terms are discussed. The general framework to develop the closure relations for the fluid particle 
interaction and phase change terms is presented. Finally, the one-dimensional interracial area transport 
equation Js used to identify possible methods to relate the source and sink terms to experimentally 
measurablLe interfacial parameters, such that experiments can be used to establish models for these terms. 

1. INTRODUCTION 

The interfacial transfer terms are strongly related to 
the interfacial area and to the local mechanisms, such 
as the degree of ~Lurbulence near the interfaces. Basi- 
cally, the interfacial transport of mass, momentum 
and energy is proportional to the interfacial area con- 
centration and to a driving force. This area concen- 
tration, defined as the interfacial area per unit volume 
of the mixture, characterizes the kinematic effects; 
therefore, it must be related to the structure of the 
two-phase flow field. On the other hand, the driving 
forces for the interphase transport characterize the 
local transport mechanism, and they must be modeled 
separately. 

Basic macros(zopic parameters related to the 
internal structure of two-phase flows, particularly of 
a dispersed (bubbly or droplet) flow, are the void 
fraction, particle aumber density, interfacial area con- 
centration and the particle shape factor. From 
geometric considerations, it is demonstrated by 
Kocamustafaogullari and Ishii [1] and Koca- 
mustafaoguUari et al. [2] that the particle number 
density is a key parameter in determining the inter- 
facial area concentration, but it has not been 
sufficiently invest:Lgated in the literature. 

Realizing the significance of the fluid particle num- 
ber density as an important parameter for predicting 
the interfacial area concentration in a forced con- 
vective two-phase flow channel, the following are the 
objectives of this work : 

1. to formulate the fluid particle number density 

2. 

3. 

4. 

transport in terms of the differential balance equa- 
tion which takes into account various parameters 
such as the fluid particle generation and dis- 
integration rates through the source and/or sink 
terms ; 
to develop the fluid particle interfacial area con- 
centration transport equation, 
to discuss the physical significance and possible 
mechanisms for particle interaction terms that give 
rise to the rate of change of number density due to 
sources and sinks ; and 
to demonstrate a possible method to relate these 
source and sink terms to experimentally measured 
interfacial parameters, such that experiments can 
be used to establish a model for these terms. 

2. FLUID PARTICLE TRANSPORT EQUATIONS 

2.1. Fluid particle number density transport equation 
For the analysis of dispersive systems in agitated 

vessels, the fluid particle number density transport 
equation has been extensively and successfully used 
over the past three decades [3-6]. The fluid particle 
interfacial transport equations for the interfacial area 
concentration and void fraction can be developed 
from the fluid particle number density transport equa- 
tion analogous to Boltzmann's transport equation. 
This approach recently was proposed by Reyes [7] to 
develop a set of fluid particle conservation equations 
for a distribution of chemically non-reacting, spherical 
fluid particles dispersed in a continuous medium. Here 
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NOMENCLATURE 

A cross-sectional area ~ 
A i interfacial area of a particle Vp 
ai interfacial area concentration ~pm 
D hydraulic diameter of flow channel 
d fluid particle diameter ~r 
ddp bubble departure diameter 
f particle density distribution function Weor 
fop bubble departure frequency z 
g break-up frequency of particles 
h collision frequency 
i specific enthalpy 
ifg heat of evaporation fl 
N total number of particles per unit 

volume of mixture Fg 
Na nucleation site density 
n number of daughter particles e 

produced by break-up 2 
Reo continuous phase particle Reynolds p 

number v 
Red dispersed phase particle Reynolds ~h 

number p 
r radial coordinate r 
rd fluid particle radius 
Sph formation or loss rate of particles per 

unit volume of mixture due to phase 
change 

S 1 formation rate of particles per unit ~bz 
volume of mixture due to break-up 

$2 loss rate of particles per unit volume ~b 3 
of mixture due to break-up 

S 3 formation rate of particles per unit ~b4 
volume of mixture due to 
coalescence 

$4 loss rate of particles per unit volume 
of mixture due to coalescence 

T temperature 
t time 

volume of a particle 
velocity vector 

~g gaseous phase center of mass velocity 

interfacial velocity 
particle velocity 
average particle velocity weighted by 
particle number 
relative velocity 
position vector 
critical Weber number 
axial flow direction. 

Greek symbols 
void fraction 
distribution of daughter particles upon 
break-up 
rate of interfacial phase change per 
unit volume of mixture 
energy dissipation rate per unit mass 
coalescence efficiency 
dynamic viscosity 
kinematic viscosity 
heated perimeter 
density 
external stresses 

qSph rate of change of interfacial area 
concentration due to phase change 

~bl rate of change of interfacial area 
concentration due to break-up 
rate of change of interfacial area 
concentration due to break-up 
rate of change of interfacial area 
concentration due to coalescence 
rate of change of interfacial area 
concentration due to coalescence. 

Subscripts 
c continuous phase 
d dispersed phase 
f liquid phase 
g gaseous phase 
w wall 
sat saturation condition. 

we shall follow a similar approach and extend the 
model for a general two-phase flow. 

A simple procedure accounting for the fluid particle 
entering and leaving a control volume through differ- 
ent mechanisms yields the fluid particle number den- 
sity transport equation of particles having volume v : 

~ft-]-V'(fVp) ---~ ~ S j ' J c ' S p h  . (1) 
j~l 

In this equation, f (~ ,  ~, t) is the particle density dis- 
tribution function, which is assumed to be continuous 
and specifies the probable number density of fluid 
particles at a given time t, in the spatial range d~ about 
a position ,~, with particle volumes between v and 

~ + d v .  Vp(~,v, t) is the particle velocity of volumes 
between v and ~ + dv at time t. Sph is the fluid particle 
sink or source rate due to the phase change. For  exam- 
ple, for one component bubbly flow Sph represents the 
bulk liquid bubble nucleation rate due to the homo- 
geneous and heterogeneous nucleation, and the col- 
lapse rate due to condensation for the subcooled boil- 
ing flow. The significance and methods evaluating Sph 
are discussed in great detail by Kocamustafaogullari 
and Ishii [1]. The wall nucleation rate which is not 
included in Sph must be specified as a boundary 
condition. 

The interaction term, ?E4j= IS  j, represents the net 
rate of change in the number density distribution func- 



Interfacial area transport equation 483 

tion, f ,  due to [he particle break-up and coalescence 
processes. In essence, it serves as source and/or sink 
terms for fluid particles for two-component dispersed 
two-phase flow. St and $2, respectively, represent the 
formation and loss rates of particles of volume v per 
unit volume of  mixture due to break-up. S~ and S~ 
represent the rate of  formation and loss of particles 
of size z~ due to coalescence. These terms are given in 
the following equations: 

~max 

S 1 (x, q~, t) = II ~(~', v)n(#')g(v')f(~, v', t) dr' 

(2) 

(3) $20[, ~, t) = --#(v) f (r~, ~, t) 

I/2 s~(~, ~, t) = ,~(~-~' ,  ~ ' ) h ( ~ -  ~', ~') 
~mln 

x f (~ , v -~ ' ,O f (~ ,v ' , t )d~"  (4) 

U $4 (~,, v, t) = -- ;t(v, v')h(v, v') 

× f(~,~' ,  t)f(~,v, t) dz/. (5) 

Here, g(v')  is ~Lhe break-up frequency of a particle 
having a volume of , '  ; fl(v', v) is the distribution of 
daughter particles produced upon break-up of a 
parent particle having volume v'  ; n(v') is the number 
of daughter particles produced by break-up of a 
parent particle of v ' ;  2(v,z/) is the coalescence 
efficiency once collision occurs between particles of 
volume v and v ' ;  h(z~, z,') is the collision frequency 
of particles of volumes v and v ' ;  and Vm~, and v . . . .  

respectively, are the minimum and maximum particle 
volumes. 

The fluid particle number density transport equa- 
tion of particles having volume of v described by 
equation (1) is much too detailed for most flow studies 
where the primary focus is on the average fluid particle 
behavior. Therefore, it would be advantageous to 
develop a particle number density transport equation 
that has been aw:raged over all particle sizes. It can 
be achieved by integration of equation (1) from the 
minimum particle volume to the maximum possible 
particle volume. Thus, 

: =  j~-~f:::xSjd'u'"~.I"b*maxSphdq)'= 1 3'6~min (6) 

Applying the Leibnitz rule for integration and 
noting that : 

f:~: ' f(~,v,t)dz~=N(~,t)  (7) 

the number density transport equation can be ex- 
pressed as follows : 

O-~-+V'mp~.=j= ,  S i d v +  vm"SphdV (81 
rain J qfl'mln 

where N(~, t) is the total number of particles of all 
sizes per unit volume of mixture, and Vpm(~, t) is the 
average local particle velocity weighted by the particle 
number. It is defined by : 

f~i*f(~, v, t)~p ( i ,  ~, t) dv 

Vp~n(X, t) --= (9) 

f .~a.f (~., ~, t) dv 
rain 

Equation (1) will serve as the basis for the devel- 
opment of the interfacial area concentration and void 
fraction transport equations. 

2.2. Fluid particle interfacial area concentration trans- 
port equation 

The interfacial area concentration transport equa- 
tion of particles of volume v can be obtained by mul- 
tiplying the particle number density transport equa- 
tion of particles having volume z, by the average 
interfacial area, Adv), of particles of volume v, which 
is independent of the spatial coordinate system. This 
yields the following equation : 

afA~(v) 
~t + V • (fA,(v)Vp) -- Ai(v)Sy+A~(v)Sph. 

j = l  

(lO) 

As in the case of the fluid particle number density 
equation, the fluid particle interfacial area con- 
centration transport equation of volume v given by 
equation (10) is much too detailed for practical 
purposes. It would be much more useful to develop 
an interfacial area transport equation averaged over 
all particle sizes. This can easily be done by integrating 
equation (10) from q)min to ~ . . . .  Thus, 

f~m~x d~ + V" (fA~ (~)~p) dv 
Of Ai (~) 

? = A~(v)Sj d r +  Ai(,o)Sph dr.  
J = | rain 

( l l )  

Again applying the Leibnitz rule, the average inter- 
facial area concentration transport equation can be 
expressed in a condensed form as follows : 

O~- +V-a~V~ = ~j+¢ph (12) 
j = l  

where a~(~, t) is the average interfacial area con- 
centration of all fluid particles of volumes between 
¢)min  and v . . . .  and ~i(~, t) is the interfacial velocity. 
These variables are defined as : 
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and : 

I 
~max 

a~ (~, t) = f(~,, v, t) A~ (.) dv 
~d ~min 

(13) 

| ~f(~, v,t)A, (V)~p (~, v , t )dv  
~*mln 

~(~, t) = (14) 

q~js, which are defined by : 

2 49j-- A~(~)Sj(f~,v,t)d~ j = 1 , 2 , 3 , 4  (15) 

represent the rate of change in the interracial area 
concentration due to the particle break-up and coales- 
cence processes. In line with definitions S~, $2, $3 and 
$4 expressed, respectively, by equations (2)-(5), the 
following describes each ~bj: 

x g(v')f(~.,v', t)dv'dv (16) 

~b2 = -f '~iXA,(v)g(v)f(~,v,t)d, (17) 

~ = ~ ( ~ - ~ ' , ~ ' )  h ( ~ - ~ ' , ~ ' )  
~min ~min  

x f (~ ,v-~ ' , t ) f (~ ,v ' , t )dv 'dv  (18) 

x f(~,v ' , t) f(~, , . , t )dv'd. .  (19) 

From the above equations, it is evident that ~ and 
¢2, respectively, represent the rate of increase and 
decrease in the interfacial area concentration due to 
the fluid particle break-up process, whereas ~b3 and ~b~ 
describe the rate of increase and decrease due to the 
coalescence process. 

Similarly, ~pu, which is defined by : 

~bph -- A~ (v)Sph dv (20) 

represents the rate of interfacial area concentration 
change due to evaporation or condensation. 

2.3. Fluid particle volume fraction (void fraction) trans- 
port equation 

The void fraction transport equation of particles 
having volume . can be obtained by multiplying the 
particle number density transport equation of par- 
ticles having volume v by the average volume of 
particles. This yields the following equation : 

a-7- + v .  ( f ~ )  = ~sj+~s~. (21) 
i = 1  

As in the case of obtaining the interfacial area con- 
centration transport equation, equation (21) can be 
integrated to obtain the void fraction transport equa- 
tion as follows : 

Noting that : 

a(X,t) =- i'm~xf(~,v,t)'vdv (23) 
3vm~. 

and using equation (7), it can be shown that : 

~ t t + V . c ~ = f ~ : * ~ v S j + S , h . ) d v  (24) 

where ~(X, t) is the average velocity of the center of 
volume of the dispersed phase. It is defined by : 

f " ~ f  (~, v, t)v ~p (~, v , t )dv  
d ~'m,n 

V(~, t) = (25) 

Equation (24) is the fluid particle volume fraction 
transport equation which represents the volume bal- 
ance for particles of constant density. Both the inter- 
facial area concentration and void fraction transport 
equations are the moments of the number density 
transport equation. Since the weighting functions in 
these equations are the interfacial area and volume, 
respectively, the resulting equations yield macroscopic 
transport of the respective quantities. 

The consistency of the above derivations can be 
justified by considering the gaseous phase continuity 
equation which is given by : 

c~c~pg 
~3t + V "  ~pgVg = F g  (26) 

where Fg is the amount of phase change per unit 
volume of the mixture, and Vg(~, t) is the velocity of 
center of mass of gas phase. 

For an incompressible flow with no phase change, 
equation (26) reduces to : 

~3~ + V. c~Vg = 0. (27) 

In this case, the velocity of center of mass, Vg, reduces 
to the velocity of center of volume V as follows : 

L?-. 
= ~(~, t). (28) ~(~ , t )  _= [.  

d~ 
I, ,d ~mln  
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Finally, comparing equation (27) with equation 
(24), it can be noted that : 

f ~ ~ S j~dv=O (29) 
rain j = I 

which indicates that the net volume change due to 
coalescence and break-up would be zero. This identity 
can be used for the purpose of measuring Sis for a 
two-phase flow. 

2.4. Closure relation requirements 
The parameV~rs involved in the break-up com- 

ponents of the Sis and ~bjs terms are the maximum 
fluid particle volume, the average daughter particle 
distribution function, the average number of daughter 
particles produced by break-up of a parent fluid 
particle, and the average break-up frequency. On the 
other hand, the parameters involved in the coalescence 
component are the minimum fluid particle volume, 
the average collision frequency, and the average 
coalescence efficiency. These parameters which are 
needed to evaluate the fluid particle number density 
and the interfac, ial area concentration distributions 
are summarized as follows : 

vective pipe flow or mechanically agitated systems, 
the initial fluid particle size may be too large or too 
small to be stable. In these cases the fluid particle size is 
further determined by a break-up and/or coalescence 
mechanism. In boiling systems, in addition to the 
break-up and coalescence mechanisms, the growth 
rate should also be considered. 

When a fluid particle exceeds a critical value, the 
particle interface becomes unstable and break-up is 
likely to occur. Similarly, when fluid particles are 
smaller than some critical dimension, the coalescence 
is likely to occur on a series of collision events. There- 
fore, the particle break-up can be related to the 
maximum attainable size of the particle ; whereas par- 
ticle coalescence can be related to the minimum size. 
The literature contains several models for determining 
the maximum and minimum sizes of fluid particles. 
These models have been developed from first prin- 
ciples and have been used to develop break-up and 
coalescence criteria. These criteria, however, do not 
treat a distribution of fluid particles. Rather, they 
describe the particle size limits of break-up and coales- 
cence. 

In what follows, we shall briefly describe the basic 

I 
Break-up components 

I 

CLOSURE RELATIONS 

Maximum Daughter Number of 
particle particle daughter 
volume distribution particle 

"~max fl(q/, ~') production 
n(~') 

Break-up 
frequency 

g(~') 

I 
Coalescence components 

Minimum Particle Particle 
particle collision coalescence 
volume frequency efficiency 

"Umi n h(q~, q) ')  ,~(q~, "/)') 

In order to evaluate these terms which serve as 
source and sink terms in equations (8) and (12), accu- 
rate interaction rate models for fluid particle break- 
up and coalescence must be incorporated. These mod- 
els are typically functions of the physical and opera- 
ting conditions of the system. The overall behavior 
of the particle number density and interfacial area 
concentration in a region of space can then be pre- 
dicted by solving the proper transport equation which 
has the form of an integro-differential equation. 

3. BREAK-UP AND COALESCENCE 
MECHANISMS 

3.1. Break-up and coalescence processes 
In any two-phase flow field, the initial bubble or 

drop size is deternained in terms of the mechanism of 
fluid particle generation such as formation of bubbles 
at an orifice or bubble entrainment mechanisms and 
generation of droplets by shearing off of roll waves in 
separated two-phase flow patterns such as annular 
and stratified-wavy flows. However, in forced con- 

mechanisms that have been used to obtain the closure 
relations listed in Section 2.4. 

3.2. Break-up parameters 
3.2.1. Maximum fluid particle size : dmax or Vmax.The 

fluid particle break-up controls the maximum bubble 
or droplet size and can be greatly influenced by the 
continuous phase hydrodynamics and interfacial 
interactions. Therefore, a generalized break-up mech- 
anism can be expressed as a balance between external 
stresses, z, that attempt to disrupt the bubble and the 
surface stress, a/d, that resists the particle defor- 
mation. These stresses influence both the size of fluid 
particles, which are torn away from their point of 
formation, and also the maximum particle size which 
is stable in the flow field. At the point of break-up, 
these forces must balance. Thus, 

oc tr/(d/2). (30) 

This balance leads to the prediction of a critical 
Weber number, above which the fluid particle is no 
longer stable. It is defined by : 
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W e .  - zdmax/2O"/> 1.0 (31) 

where dmax is the maximum stable fluid particle, and 
reflects the hydrodynamic conditions responsible for 
particle deformation and eventual break-up. The 
mechanism of particle break-up can thus be related to 
the external conditions as illustrated below : 

FLUID PARTICLE BREAK-UP 

Turbulent flow Laminar flow Interracial instability 
(local turbulence) (viscous shear) (Rayleigh-Taylor 

and Kelvin- 
Helmholtz 

instabilities) 

In the case of turbulent flow, particle break-up is 
caused by fluctuating eddies resulting in the pressure 
variation along the particle surface. In laminar flow, 
viscous shear in the continuous phase will elongate 
the particle and cause break-up. However, even in the 
absence of net flow of continuous phase such as rising 
bubbles in a liquid and rising and falling drops in a 
continuous gas or immiscible liquid, the fluid particle 
break-up is caused by interfacial instabilities due to 
the Raleigh-Taylor and Kelvin-Helmholtz insta- 
bilities. 

Aside from the break-up mechanism caused by 
interracial instabilities, basically there are two external 
forces that are involved in the breaking-up of fluid 
particles, namely viscous and turbulence induced iner- 
tial forces. In most applications, the Reynolds num- 
bers that are characteristic of the flow field are so 
large that viscous effects are negligible. In other cases, 
however, inertial effects play a minor role and may 
be neglected. Existing experimental and theoretical 
information can, therefore, be classified into two cat- 
egories, namely, in which surface tension and viscous 
forces interact, and another in which surface forces 
and turbulence induced dynamic pressure forces are 
dominant. 

The first fundamental experiments on the break-up 
of drops and bubbles under the action of external 
viscous stresses and surface stress were made by 
Taylor [8]. Taylor made numerous observations, 
many of which were subsequently explained by Tom- 
otika [9]. The break-up criteria is expressed in terms 
of external viscous stress in equation (31). It is given 
by: 

We~ = I . t c (Ot ) /dr )maxdmax/2Cr  (32) 

where #~ is the absolute viscosity of the continuous 
phase, and (Ov/dr)m~x is the maximum velocity gradient 
in the external flow field. Equation (32) leads to capil- 
lary number criteria for break-up. 

The Taylor mechanism of bubble and drop defor- 
mation applies if both the undeformed and the 
elongated particles are small compared with the local 
regions of viscous flow. Several predictive equations 
for the maximum particle size were derived from equa- 
tion (32) for agitated vessels [10, 11]. 

The fluid particle fragmentation phenomenon in a 
highly turbulent flow is related to the fact that the 
velocity in a turbulent stream varies from one point 
to another. The velocity of the fluid particle at the 
surface of the particle varies from point to point. The 
velocity of the continuous phase at the surface of the 
particle also varies from point to point. Therefore, 
different dynamic pressures will be exerted at different 
points on the surface of the fluid particle. Under cer- 
tain conditions, this will inevitably lead to defor- 
mation and break-up of the fluid particle. 

The force due to dynamic pressure may develop 
either through the local relative velocity around the 
particle, which appears because of inertial effects, or 
through the changes in eddy velocities over the length 
of the droplet. For  both cases, however, the external 
stress appearing in equation (31) can be expressed 
in terms of the kinetic energy differences around the 
droplet. From equation (31), the former yields 

= PcVr)maxdmax/2ff >/ 1.0 (33) Wecr) 1 2 

whereas the latter gives 

Weco2 = p~ ~ dmJ2Cr ~ 1.0. (34) 

The mean-square spatial fluctuating velocity term, 
v~, describes the turbulent pressure forces of eddies 
of size dmax and is defined as the average of the square 
of the differences in velocity over a distance equal to 
the fluid particle diameter. Vr)max is that limiting local 
relative velocity at which a fluid will flow around a 
particle guspended in it. The subscript c identifies the 
continuous phase. 

Considering the simplest case of turbulence, 
namely, an isotropic homogeneous turbulence, the 
main contribution to the kinetic energy, v~, is made 
by the fluctuations in the region of wavelengths where 
the Kolmogoroff energy distribution is valid. In this 
region, the local turbulence pattern is solely deter- 
mined by the energy dissipation per unit mass, e. The 
mean square velocity difference between two points of 
length dmax is given by Batchelor [12] as follows : 

V c ~" (~dmax) 2/3 (35) 

whereas Or)ma x is given by Levich [13] as : 

Vr)m,x ~ [e.dma,~(Pa/Pc)] el3 (IApl/Pa) ~/2 (36) 

where the subscript d identifies the dispersed phase. 
When equations (35) and (36) are inserted into their 

respective places in equations (33) and (34), and the 
resulting equations are solved for d~ax, the following 
equations can be obtained for the maximum particle 
size : 

dmax = (aWe~r)2/k2P¢)3/% -z/5 (37) 

and 
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dma x -~- (aWec.l/knp~)3/~e-2/5(pdpd)2/5(Ap/pd)-3/5 
(38) 

where kt and k2 are proportionality coefficients. These 
numerical coefficients probably have no great sig- 
nificance. They are set forth here only in order to 
stress the abseno." of  large numerical coefficients in 
these formulas. Both kt and k2 are the same order of 
magnitude of one. 

Equations (37) and (38) have been used in literature 
to determine the maximum stable particle size in 
liquid-liquid, liquid-gas and gas-liquid dispersions 
irrespective of their differences in terms of fluid 
properties. The differences can be explained by com- 
paring the expressions for fluid velocity relative to the 
particle, Or) . . . .  with the change in velocity of tur- 
bulence eddies ow;r a distance equal to the dimension 
dm~x of the particle (v-~) u2. 

A comparison of equations (35) and (36) shows, 
that, with Pd <~Po, V~)m~x << (V--~) 1/2. In these cases, 
large-scale eddies of continuous phase completely 
entrain the fluid particle together with portions of 
fluid adhering to k, and transfer both as a single unit. 
The entrainment of  particles by turbulence eddies is 
complete. Therefiare, the second Weber number 
criterion, We¢o2, which is based on v-~, mechanistically 
describes the fragmentation of  drops and bubbles in 
a turbulent liquid flow for Pd ~ Pc" However, the dis- 
integration of  a drop in a turbulent gas stream occurs 
in a somewhat different manner. In this case, the 
entrainment of particles by turbulence eddies cannot 
be complete. The: smaller-scale fluid motions are 
unable to entrain the particle, and, in relation to them, 
the particle acts as a motionless solid body. The fluid 
participating in these small-scale motions flows over 
the surface of  the particle. In this case, inertial effects 
used in derivation of equation (36) play an important 
role in the mechanism of  the drop's motion. In the 
case of Po >> PC, from equations (34) and (35), it is 
evident that : 

v~)m~Jv~ ""  (pa/po) '/3 (39) 

~ Therefore, the dis- which indicates that Vr)max >> Vc - 
ruptive forces based on vr)m~x become much larger than 
the disruptive forces generated by changes in eddies. 
In view of this brief' discussion, the first critical Weber 
number criterion, lYecm, describes the disintegration 
of drops in a turbuiLent gas stream. 

Several fluid particle break-up mechanisms have 
been discussed and the applicability of each mech- 
anism has been clarified. However, as it is evident 
from equations (37) and (38), the key parameter in 
determining local ,~,~ is the turbulent energy dis- 
sipation rate, e. Local turbulence and dissipation mod- 
els for two-phase flow have not been established. 
Therefore, it is a challenge to develop a model for 
local correlation. First a one-dimensional model will 
be developed, and it is expected that in the turbulent 
core region this model can be used as a local corre- 

lation, since the turbulent characteristics may be 
approximated as uniform. However, in the wall shear 
layer, both turbulence and viscous effects become 
important. In this region, shear induced turbulence 
should be investigated. 

3.2.2. Break-up frequency: g(v'). Several phenom- 
enoiogical models have been developed to predict the 
break-up frequency in liquid-liquid dispersions [4, 11, 
14-16]. These models are heavily influenced by flow 
conditions and can be classified according to the 
hydrodynamic flow regime as follows : 

BREAK-UP FREQUENCY MODELS 
I 

Turbulent flow models Laminar flow model [11] 

• Molecular decomposition analogy model [11] 
• Dispersion hydrodynamics break-up models [4, 14, 15] 
• Critical velocity break-up frequency model [11] 
• Drop oscillation break-up frequency model [14] 

As indicated above, models should be chosen with 
regard to the flow conditions. As an example, for 
dispersions in turbulent flow, the kinetic energy trans- 
ferred by the eddies plays a dominant role in the break- 
up process. The imbalance between the kinetic energy 
and the surface energy is used to define the break-up 
frequency. In laminar flow or transition regimes, the 
imbalance would be between the shear forces and the 
surface forces on the particle, and many expressions 
for the break-up frequency in such environments can 
be found in the literature. The following model for 
break-up frequency in turbulent flow based on dis- 
persion hydrodynamics is given here as an example. 
This model which was proposed by Coulaloglou and 
Tavlarides [4] uses the eddy-drop collision frequency 
and energy dissipation. It is dependent on the physical 
properties, particle size, and energy dissipation rate 
per unit mass as shown below : 

ff(7)') ~--- C 1 (el /3/TS 2/9) exp [--C2a/Pd(e2/3~'5/9)] 

(40) 

where the constants cl and c2 are adjustable, to be 
determined from experiments according to the flow 
environment. It is to be noted that this expression is 
very similar to the one that can be derived using the 
molecular decomposition model except, in the latter, 
the continuous phase density was used instead of the 
dispersed phase density. Recently, this model has been 
improved by Tsouris and Tavlarides [17]. 

In the above derivation, the break-up rate was taken 
to be a function of the dispersed phase density. 
However, in gas-liquid systems, break-up is primarily 
governed by the density of  the continuous liquid 
phase. The lack of  an independent measurement of the 
break-up rate, as well as the use of several adjustable 
constants appearing in equation (40), prevent a direct 
use of equation (40) in bubbly flow systems. For  exam- 
ple, comparisons of experimental data, for bubble 
break-up frequency with equation (40), which was 
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originally derived for drop break-up frequency, 
resulted in poor agreement [18]. 

3.2.3. Number of daughter particle production : n(~'). 
This parameter determines the average number of 
daughter particles produced by break-up of  a parent 
particle of volume v'. Various experimental data indi- 
cate that 2-7 particles are produced in each break-up 
of liquid-liquid dispersions [14]. 

In the area of the bubble break-up process, the 
break-up process was considered to occur by break- 
up of a bubble into two daughter bubbles in random 
size. However, recently Prince et al. [19] and others 
have noted that bubble break-up is often accompanied 
by the production of two primary bubbles and a num- 
ber of smaller fragments. Incorporation of this effect 
instead of binary break-up is expected to significantly 
alter the number of smaller bubbles and the interfacial 
area concentration predicted by the transport equa- 
tions. 

3.2.4. Daughter particle distribution : fl(~, ~'). This 
parameter is introduced due to the possible random 
production of non-equal daughter particles upon 
break-up. The simplest representation of daughter 
droplets volume density is to assume that two equal 
volume daughter particles are produced upon break- 
up. In relativity, a large number of non-equal daughter 
particles are produced upon break-up in a random 
fashion. Coulaloglou [20] used a normal distribution 
function as follows : 

/~(v', v) = (1 /x /~ f i )  exp [ -  (v-~)2/26z I. (41) 

This relation is based on the variance 6: which is 
chosen in such a manner that 99.6% of the particles 
density lies within the volume range 0-v' .  z/ is the 
volume of the breaking parent drop and ~ is the mean 
volume of  the daughter droplets. 

The distribution given by equation (41) is only one 
example of several distribution functions that are 
available. For  example, Hsia and Tavlarides [21 ] used 
beta distribution which gives 100% probability within 
two acceptable limits whereas Tsouris and Tavlarides 
[ 17] used a bimodal distribution function. It is impor- 
tant to note that fl(v', v) can be expressed in terms of 
any other suitable distribution function. 

3.3 Coalescence parameters 
3.3.1. Description of coalescence processes. While the 

maximum particle size was used as a criterion for the 
break-up process (where the particle size is considered 
stable when its size is below the maximum value), the 
minimum particle size can be used as a criterion for 
the initiation of the coalescence process (which is 
enhanced by the presence of small particles). It is 
assumed that there is a minimum stable particle size 
below which a pair of particles will coalesce upon 
colliding, and the ultimate coalescence process can be 
described in three consecutive stages. First, particles 
collide, and, upon the collision of two particles, the 
surfaces of the colliding particles flatten against each 

other; trapping a thin film between them under the 
action of the continuous phase. This film then drains 
over a period of time from an initial thickness of h to 
a critical thickness, he, under the action of the film 
hydrodynamics. The hydrodynamics of the film 
depend on whether the film surface is mobile or immo- 
bile, and the mobility, in turn, depends on whether 
the continuous phase is pure or a solution. Finally, 
once the film reaches its critical thickness, it ruptures 
due to film instability, resulting in coalescence. 

From the first step, it is seen that the coalescence 
rate is intimately connected to the particle collision 
frequency. In order to determine whether a given col- 
lision will result in coalescence, it is necessary to deter- 
mine the collision efficiency. Two fluid particles will 
coalesce, provided they remain in contact for a period 
of time sufficient for the film between them to thin to 
the critical value necessary for rupture. 

Considering a bubbly two-phase flow, collision may 
occur due to a variety of mechanisms summarized 
below : 

COLLISION PROCESSES 
f 

Turbulent Size dependent Wake Shear layer 
fluctuations rise velocity entrain- induced 

differences ment velocity 
differences 

From the above, it is clear that collisions may result 
from the random motion of bubbles due to turbulence. In 
addition, bubbles of different sizes will have different 
rise velocities relative to continuous liquid phase which 
may lead to collision. A flow field generated at the 
wake of large Taylor bubbles entrains small bubbles 
into the Taylor bubble, resulting in a collision of  
small bubbles with a large bubble. Finally, bubbles 
located in a region of relatively high liquid velocity 
may collide with bubbles in a slower section of the 
velocity field. The first mechanism is a random process 
which largely depends on the fluctuating bubble 
motion and the inter-bubble distance. However, the 
latter three mechanisms highly depend on the particle 
size distribution and internal flow structure. 

The coalescence process described above indicates 
that a clear understanding of the coalescence process 
depends on accurate knowledge of the minimum par- 
ticle size, collision frequency and coalescence 
efficiency. These parameters are briefly discussed 
below. 

3.3.2. Minimum fluid particle size. As described in 
Section 3.1, it is assumed that there is a minimum 
stable particle size below which a pair of particles will 
coalesce upon colliding. The equation that describes 
the minimum diameter for the absence of  coalescence 
(i.e. the diameter below which coalescence will occur) 
can be obtained in the same way as the break-up 
equation. The adhesion force acts to hold the colliding 
fluid particles together. The energy of  adhesion of two 
particles of equal diameter is given by Shinnar and 
Church [23] and Shinnar [22] as : 
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A E  = Cz d (42) 

where C~ is a parameter dependent upon the critical 
rupture thickness, he. 

A coalescence criterion can be developed by deter- 
mining the critical value of the kinetic energy, which 
is given by C2pe(ed) 2/3, to the adhesion energy. That 
is, 

K E  
A-"E = C2pc(gdmin)2/3 /Cl dmin 

= C2pce2/3dSm~3/Cl = constant (43) 

o r  

dmin : C3/p3/8~ 1/4. (44) 

Thomas [24] developed a coalescence criterion by 
performing a for,:e balance similar to that presented 
above. However, the adhesion force was replaced by 
the surface tension force acting at the time of rupture. 
Thomas predicted the coalescence to occur if the drop 
diameter is less [han the minimum diameter defined 
by : 

dmin ~ 2.4(a2h~/#¢p~e)1/4. (45) 

Equations (44) and (45) have been employed exten- 
sively in correlations for the minimum and mean 
diameters of dispersed phase drops in mechanically- 
agitated liquid-liquid systems [16, 25--27]. The devel- 
opment of phenomenological models for minimum 
bubble size in gas-liquid dispersions, however, has 
received comparatively little attention, even though 
such dispersed systems are of significant interest to 
bubbly two-phase flow hydrodynamics and heat 
transfer. 

3.3.3. Collision frequency: h(v,v'). Based on the 
type of flow as described in the section on coalescence 
parameters, a variety of  definitions for the collision 
frequency betweerL two particles of diameters d and d' 
in liquid-liquid dispersions were proposed [11]. The 
suggested expression for the velocity averaged c01- 
lision frequency ill a uniform shear flow can be ex- 
pressed as : 

h(d, d') = 1.366(d+ d') 3 (tgv/dr) (46) 

where (dv/dr) is the velocity gradient perpendicular to 
the direction of liquid particle motion. 

For turbulent flow, the velocity gradient can be 
replaced by : 

~v/Sr ~- (e/v) 1/2. (47) 

Therefore, the colb~sion frequency becomes : 

h(d,d') = 1.366(d+d')3(s/v) ~/2. (48) 

It should be noted that the drop size relative to the 
turbulent eddy size will affect the collision frequency. 
When the drops are small compared to the turbulent 
eddies, the drop velocity will be significantly affected 
by the eddies. When the drop density is equal to the 
density of the conti:auous phase, the drop velocity will 

be very close to the velocity of the continuous phase 
flow field. Under these conditions, the collision fre- 
quency will be determined by local turbulent flow 
characteristics. In this case, the collision frequency is 
given by : 

h(d,a e) = O,618(d+dQ3(e/v) Z/2. (49) 

The only difference between equations (48) and (49) 
is the constant coefficient. 

When the drops are large compared to the turbulent 
eddies, the drop will be exposed to the eddies' stresses 
from all directions. This results in a random drop 
motion. This randomness in drop motion led 
researchers to consider the analogy between the col- 
lision of drops and the collision of molecules, as in 
the kinetic theory of gases. Based on this analogy, 
Rietema [28] proposed the collision frequency in terms 
of the average turbulent velocity fluctuations. 

In addition to the collision frequency's dependence 
on particle size, the density of both dispersed and 
continuous phases plays an important role in shaping 
the collision frequency. When the drop density is sig- 
nificantly different than the density of the continuous 
phase, the drops move with different velocities based 
on their sizes. Therefore, the relative velocity between 
drops will be the primary cause of collision. This is 
known as the acceleration mechanism or size depen- 
dent rise velocity difference mechanism for collisions. 
This mechanism plays an important role whenever 
there is a significant difference in dispersed and con- 
tinuous phase densities as in the case of bubbly flow. 

Many correlations can be found in the literature for 
small and large sizes with equal or non-equal phase 
distributions. Recently, Prince and Blanch [18] in their 
predictive model for the coalescence rate in gas-liquid 
dispersions considered the cumulative contribution of 
three collision mechanisms due to turbulence, buoy- 
ancy and laminar shear. 

3.3.4. Coalescence efficiency: 2(v, v'). In order to 
determine what fraction of fluid particle collision leads 
to coalescence events, it is necessary to define a coales- 
cence or collision efficiency. The coalescence efficiency 
2(v, v') may be defined as the fraction of collisions 
between fluid particles of volumes v and ~' that result 
in coalescence. This efficiency will be a function of the 
average contact time between bubbles and the average 
time required for particles to coalesce (the average 
coalescence time), The average coalescence time is the 
time required for the continuous fluid film trapped 
between the two colliding particles to thin to a critical 
value so that rupture, and consequently coalescence, 
can occur. 

An expression for the efficiency is given by Coul- 
aloglou and Tavlarides [4] : 

2(d, d') = exp [ -  t¢o~ (d, d')/tcon (d, d')] (50) 

where tcoa(d, d') is the average coalescence time of par- 
ticles of diameters d and d', while tcon(d, d') is the 
contact time for the particles. 

Different models have been used to determine the 
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coalescence efficiency in turbulent and laminar flow 
regimes for liquid-liquid dispersions. These models 
are based on the biomolecular gas reaction analogy, 
sufficiency of the time of contact, impact of colliding 
particles as well as combined approaches for collision 
efficiency [II], An expression for the coalescence 
efficiency in gas-liquid dispersions was proposed by 
Prince and Blanch [18]. 

4. FORMULATION OF THE INTERFACIAL AREA 
TRANSPORT EQUATION 

4.1. General functional dependence o f  various source 
and sink terms 

As derived from the statistical distribution trans- 
port equation, the local interfacial area transport 
equation is given by equation (12). For  simplicity, it 
is possible to combine two terms related to the break- 
up process. Thus the break-up source term is defined 
as:  

~ba~s = 4, q-~bz >/0 (51) 

whereas the coalescence sink term is defined by : 

~o - - ( ~ 3  +~,) >/o. (52) 

Hence, the interfacial area transport equation 
becomes : 

t3a~ 
~ -  +V'a,V~ = ~bdi~--q~co+¢ph. (53) 

The various local mechanisms affecting the break-up 
and coalescence terms have been discussed in Section 
3. Here we study the general functional dependence 
of these two terms. The fluid particle disintegration 
occurs mainly due to the turbulent fluctuation and 
interfacial stability. Therefore, locally it should 
depend on the particle size, ra, turbulent intensity, 
vc-Tz, and local relative velocity, yr. Hence : 

Cd~s ~ We) (54) = Cdis(V¢ , rd, 

where the Weber number is given by 

2pcrdv~ 
We =- (55) 

t7 

which scales the interfacial instability. 
The coalescence process depends on the random 

collisions and the systematic wake entrainment. The 
collision is a strong function of the inter-particle dis- 
tance and the amplitude of the fluctuating particle 
velocity. The latter depends on the continuous phase 
turbulent fluctuations. The wake flow structure 
depends on the particle Reynolds number, Red, and 
the particle size. The coalescence probability after a 
collision depends on the particle sizes and fluctuating 
velocity components. Thus : 

~oo 4'0o(~, ..-n = rd, vc , Red). (56) 

The turbulence intensity in dispersed flow may be 

related to the continuous phase Reynolds number, 
Re¢, and a distance from a wall. 

4.2. One-dimensional formulation and relation to exper- 
imental measurements 

The simplest form of the interfacial area transport 
equation can be obtained by applying the cross-sec- 
tional area averaging and reducing it to a one-dimen- 
sional form. This form of the interfacial area transport 
equation may have the most useful and practical appli- 
cations in the existing one-dimensional two-fluid 
model. It can replace the traditional flow regime maps 
and regime transition criteria. The changes in the two- 
phase flow structure are predicted mechanistically by 
introducing the interfacial area transport equation. 
The effects of the boundary conditions and flow devel- 
opment are efficiently modeled by this transport equa- 
tion. Such a capability does not exist in the current 
state-of-the-art. Thus a successful development of the 
interfacial area transport equation can make a 
quantum improvement in the two-fluid model 
formulation. 

By applying the cross-sectional area averaging, the 
one-dimensional area transport equation becomes : 

63(ai) 0 
O t -F -~2 ( ai ) ff iz -~ (~d i s ) ' q - (~co )+ (~ph ) '~ - (~ )w)  

(57) 

where (ai)  denotes the area averaged interfacial area 
concentration. The term (~bw) stands for the wall 
nucleation source which can be important in boiling 
and condensation processes. The constitutive relation 
for this wall source term is discussed in Section 4.3. 
The average interfacial velocity is defined by 

<air,=> 
/~iz ~ ( a i )  " (58) 

By using the local interfacial area measurement 
methods proposed by the authors [29-32], the fol- 
lowing parameters can be measured simultaneously : 

ai = ai(r,  z)  (59) 

and 

Uiz = Uiz (r, Z). (60) 

Under the adiabatic and steady conditions, there are 
no effects of phase changes ; thus : 

d 
-~Z (aiViz)  = (q~dis) --  ( 0co )  (61) 

which shows the way to measure the right-hand side 
source and sink terms. First, two limiting cases are 
studied to isolate the break-up source term and the 
coalescence sink term. It is considered that there is a 
critical Reynolds number, Re*, for a break-up process. 
Below this value, the break-up of fluid particles 
becomes insignificant. Hence, for Re~ << Re*: 
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d 
IT (aivi~) -~ - (~b~o). (62) 

Typically, this happens in low velocity bubbly flow. 
The gradual coalescence leads to the formation of 
Taylor cap bubbles. This is followed by the wake 
entrainment and development into slug flow. Hence, 
by measuring th,~ left-hand side terms at two different 
axial locations, one obtains : 

1 
(~co)  := -- ~z[(aiViz)2 --(aiViz)l]. (63) 

These data represent the global changes in the inter- 
facial area concentration. 

For  bubbly to slug flow transition, both the random 
coalescence and wake entrainment by Taylor bubbles 
can be significant. In order to measure the process of 
the wake entrainment, it is necessary to measure the 
characteristics of the large Taylor bubbles and small 
wake bubbles separately. The rate of coalescence due 
to the wake entrainment can be obtained from the 
separate measurements of interracial velocities, inter- 
facial area and void fractions of these two groups of 
bubbles using multi-sensor probe techniques [29]. 

From a geometrical consideration, the interfacial 
area concentration of  a slug or churn-turbulent flow 
[33] is given by : 

4.5 ( ~ ) - ~  3CXg s 1 - ( ~ )  
ai - - -  + (64) 

D 1 --tXg~ rsm 1 -- ctg~ 

where (~) ,  ~gs, D and rsm are the average overall 
void fraction, average void fraction in the liquid slug 
section, hydraulic diameter and the Sauter mean 
radius of the small bubbles in the liquid slug section, 
respectively. The multi-sensor probes give all the par- 
ameters in the ahove equation. The first and second 
terms on the right-hand side give the separate con- 
tributions from ~Ihe large Taylor bubbles and small 
bubbles in liquid slug. Thus, the total coalescence 
effect on the interfacial area can be measured. Fur- 
thermore, by measuring the velocity of Taylor 
bubbles, vig,, and that of small bubbles, rib , by the 
multi-sensor probes, the influx of  the small bubbles 
into the large slug bubble can be directly measured. 
This will give the sink term due to the entrainment 
alone. 

For  a break-up dominated section at high Reynolds 
number, Re~ > Re* the coalescence process may be 
neglected when tlhe particle sizes are relatively large. 
Then : 

d 
(O~iViz) "~ (~ i s )  (65) 

or  

1 
(~dis) = ~-~g [(aiViz)2 --(aivu) , ] .  (66) 

The boundary conditions for (ai)  can be changed by 
using different bubble injectors. For  this group of 

experiments, relatively large bubbles which are 
unstable are injected at the inlet. 

One extreme limit of this type of experiment has 
been already performed [34]. The detailed observation 
on the break-up process such as the wave growth of 
breaking bubbles are measured. 

When two-phase flow is fully established, the break- 
up process and coalescence process should reach an 
equilibrium, thus : 

(~d i s ) - -  (~co) = 0 (67) 

which is a good check of the constitutive relations for 
break-up and coalescence processes. 

The above three types of experimental d a t a - - 0 )  
coalescence sink term data;  (2) break-up source term 
data;  and (3) fully developed equilibrium data--wil l  
be analyzed based on the general functional depen- 
dence of the constitutive relations for (q~dis) and 
(~bco). These phenomenological models should form 
the basis for the more mechanistic models discussed 
in Sections 2 and 3. 

4.3. Wall nucleation source term ( dpw) 
For  boiling flow, the wall nucleation source (~bw) 

is the most important term. In view of this, an effort 
has been made to develop a reliable constitutive 
relation for (~b,) [1, 33]. It can be expressed by the 
following form : 

(q~w) = ~Nafdpnd2p . (68) 

Here ~h, A, Na, fdp and ddp are the heated perimeter, 
flow area, nucleation site density, bubble departure 
frequency and bubble departure diameter, respec- 
tively. For  a boiling system, the nucleation site density 
is given approximately by Kocamustafaogullari and 
Ishii [1] as follows: 

1 [- 2o- T~at 3 -4.4 
Na = --d2p IL-( T*--T~t)PgAif [g ~ f (p*) (69) 

where f(p*) is a known function of a density ratio. 
The bubble departure diameter is given by : 

/ o" \0.5 (Ap~O.9 
dip = 2.64 x 10-sO ~-~pg) \-~-g / . (70) 

Here, 0 is the contact angle. The bubble departure 
frequency is expressed by : 

1" 1~8 FagA~P]°'2' (71) 
A=a~L pr ~ J ' 

Combining the above expressions, the nucleation site 
density can be calculated. 

5. SUMMARY AND CONCLUSIONS 

The interfacial area transport equation has been 
derived from the statistical model of the fluid particle 
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number transport equations. The basic mechanisms 
affecting the source and sink terms in the interfacial 
transport equation have been discussed in detail. The 
underlying physics and modeling approach to develop 
the closure relations for these terms are presented. The 
hydrodynamic effect can be divided into the break-up 
and coalescence of  fluid particles. There are a number 
of  different potential mechanisms which can lead to 
the break-up of  fluid particles. For  example, the local 
turbulence, high shear flow and interfacial instability 
can lead to substantial particle break-up. The coales- 
cence process is caused by fluid particle collisions and 
subsequent break-up of  the particle interface. The col- 
lision can be produced by turbulent fluctuations, size 
dependent rise velocity, wake entrainment and shear 
layer induced velocity difference. These phenomena 
affecting the break-up and coalescence of  fluid par- 
ticles are reviewed and a preliminary modeling 
approach is indicated. 

The development of  the one-dimensional interfacial 
area transport equation and the necessary exper- 
imental data to support the modeling effort are 
discussed. The changes in the flow regime can be pre- 
dicted mechanistically by the interfacial area transport 
equation. The effects of  the initial and boundary con- 
ditions on the flow structure development are effec- 
tively modeled by the present approach. Such capa- 
bility does not  exist in the present state-of-the-art. 
This novel approach should lead to a substantial 
improvement  in the two-fluid model  formulation. 
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